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Lecture 2: 
Multipoles, Conformal Mapping, 

Pole tip design 



Multipole Magnet Nomenclature 

• The dipole has two poles and field index n=1. 

   

• The quadrupole has four poles and field index n=2.  

 

• The sextupole has six poles and field index n=3.   

 

• In general, the N-pole magnet has N poles and field 
index n=N/2. 
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Even Number of Poles 

• Rotational periodicity does not allow odd number of poles.  
Suppose we consider a magnet with an odd number of poles. 

 

• One example is a magnet with three poles spaced at 120 
degrees.  The first pole is positive, the second is negative, the 
third is positive and we return to the first pole which would 
need to be negative to maintain the periodicity but is positive. 
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Characterization of Error Fields 

• Since                    satisfies LaPlace’s equation, 

 

 

 

must  also satisfy LaPlace’s equation.                   

 

• Fields of specific magnet types are characterized 
by the function                              

     

  

where the first term (N) is the “fundamental” and 
the remainder of the terms (n) represent the “error” 
fields.   
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Allowed Multipole Errors 
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• The error multipoles can be divided among allowed or 
systematic and random errors.    

 

• The systematic errors are those inherent in the design and 
subject to symmetry and polarity constraints.  

  

• Symmetry constraints require the errors to repeat and 
change polarities at angles spaced at p/N, where N is the 
index of the fundamental field.   



• In the figure, the poles are not symmetrical 
about their respective centerlines.  This is to 
illustrate rotational symmetry of the N poles. 
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• Requiring the function to repeat and change signs 
according to the symmetry requirements:   

• USing the “polar” form of the function of the 
complex variable:   
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• In order to have alternating signs for the poles, the 
following two conditions must be satisfied.   

• Rewriting;     
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• Therefore; 

integers. odd all , 7, 5, 3, ,1                   1cos

  integers. all , 4, 3, 2, ,1                      0sin
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• Rewriting;  
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Examples 
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– For the dipole, N=1, the allowed error 

multipoles are n=3, 5, 7, 9, 11, 13, 15, … 

 

– For the quadrupole, N=2, the allowed error 
multipoles are n=6, 10, 14, 18, 22, … 

 

– For the sextupole, N=3, the allowed error 
multipoles are n=9, 15, 21, 27, 33, 39, … 



Magnet Field Uniformity 

• In general, the two dimensional magnet 
field quality can be improved by the amount 
of excess pole beyond the boundary of the 
good field region.   

• The amount of excess pole can be reduced, 
for the same required field quality, if one 
optimizes the pole by adding features 
(bumps) to the edge of the pole. 
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• The relation between the field quality and 

"pole overhang" are summarized by simple 

equations for a window frame dipole magnet 

with fields below saturation. 
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These expressions are very important since they give general rules for the design 
of window frame dipole designs.  It will be seen later that these expressions can 
also be applied to quadrupole and gradient magnets.  
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• Graphically: 
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Introduction to conformal mapping 

• This section introduces conformal mapping. 
 

– Conformal mapping is used to extend the techniques of 
ensuring dipole field quality to quadrupole field quality. 

   

– Conformal mapping can be used to analyze and/or 
optimize the quadrupole or sextupole pole contours in 
by using methods applied to dipole magnets. 

 

• Conformal mapping maps one magnet geometry into 
another.   

 

• This tool can be used to extend knowledge regarding one 
magnet geometry into another magnet geometry. 
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Mapping a Quadrupole into a Dipole 

• The quadrupole pole can be described by a 

    hyperbola;  
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Where V is the scalar potential and C is the coefficient of the  
function, F, of a complex variable. 

The expression for the hyperbola can 
be rewritten;  
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Therefore;  

the equation of a dipole since the imaginary (vertical) component is a 
constant, h.   
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Mapping a Dipole into a Quadrupole 

• In order to map the Dipole into the Quadrupole, we use the 
polar forms of the functions;   
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Mapping a Dipole into a Sextupole 

• In order to map the Dipole into the Sextupole, we use the 
polar forms of the functions;   
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Mapping a Dipole into 2N-pole 

• General formula to map a Dipole into a 2N-pole 
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

• u and v are the dipole coordinates 
 

• x and y are the coordinates for the 2N-pole 



Example: Ideal Dipole 
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Ideal Dipole mapped in a Quadrupole 
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Ideal Dipole mapped in a Sextupole 
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Optimized Dipole 
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Optimized Dipole mapped in a Quadrupole 
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Optimized Dipole mapped in a Sextupole 
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The gradient magnet 
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Gradient into a Dipole Magnet 
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Gradient into a Dipole Magnet 
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Dipole into a Gradient Magnet 
(not optimized) 
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Dipole into a Gradient Magnet 
(optimized) 
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The Septum Quadrupole 
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• In order to maximize the number of collisions and 
interactions in a collider, the two beams must be tightly 
focused as close to the interaction region as possible.  At 
these close locations where the final focus quadrupoles are 
located, the two crossing beams are very close to each 
other.  Therefore, for the septum quadrupoles, it is not 
possible to take advantage of the potential field quality 
improvements provided by a generous pole overhang.  It is 
necessary to design a quadrupole by using knowledge 
acquired about the performance of a good field quality 
dipole.  This dipole is the window frame magnet.  



• The conformal map of the window frame dipole aperture 
and the centers of the separate conductors is illustrated.   

• The conductor shape does not have to be mapped since 
the current acts as a point source at the conductor center. 
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Quadrupole Field Quality 

• The figure shows the pole contour of a quadrupole 
and its required good field region.   

The pole cutoff, the point at which the 

unoptimized or optimized quadrupole 

hyperbolic pole is truncated, also 

determines the potential field quality for 

the two dimensional unsaturated 

quadrupole magnet.   
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• The location of this pole cutoff has design implications.  

It affects the saturation characteristics of the magnet 

since the iron at the edge of the quadrupole pole is the 

first part of the pole area to exhibit saturation effects as 

magnet excitation is increased.  Also, it determines the 

width of the gap between adjacent poles and thus the 

width of the coil that can be installed (for a two piece 

quadrupole).  The field quality advantages of a two 

piece quadrupole over a four piece quadrupole will be 

discussed in a later section. 
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• Given; (uc, vc) satisfying dipole uniformity 
requirements. 

• Find; (xc, yc) satisfying the same requirements for 
quadrupoles. 
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Substituting the appropriate factors for the unoptimized and optimized dipole 
cases, we get finally for the quadrupoles;  
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• The equations are graphed in a variety of formats 

to summarize the information available in the 

expressions. The expressions are graphed for both 

the optimized and unoptimized pole to illustrate 

the advantages of pole edge shaping in order to 

enhance the field.  The quality at various good 

field radii are computed since the beam typically 

occupies only a fraction of the aperture due to 

restrictions of the beam pipe. 
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Typically,  1max 
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Therefore,  

in the mapped space. 

However, there is a problem in the mapping of the 
quadrupole and sextupole to the dipole space.   
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• When mapping from the quadrupole or sextupole geometries 
to the dipole space, the FEM computation is initially made in 
the original geometry and a vector potential map is obtained 
at some reference radius which includes the pole contour. 
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The vector potential values are then 
mapped into the dipole (w) space and 
used as boundary values for the 
problem.   
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General guidelines for 
Quadrupole/Sextupole Pole Optimization 
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• It is far easier to visualize the required shape of pole edge bumps 
on a dipole rather than the bumps on a quadrupole or sextupole 
pole.   

• It is also easier to evaluate the uniformity of a constant field 
for a dipole rather than the uniformity of the linear or 
quadratic field distribution for a quadrupole or sextupole.   

• Therefore, the pole contour is optimized in the dipole space 
and mapped back into the quadrupole or sextupole space. 



• The process of pole optimization is similar to that of analysis 
in the dipole space. 

– Choose a quadrupole pole width which will provide the 
required field uniformity at the required pole radius.   

 

• The pole cutoff                 for the quadrupole can be 
obtained from the graphs developed earlier using the 
dipole pole arguments.   

 

• The sextupole cutoff can be computed by conformal 
mapping the pole overhang from the dipole space 
using                  

 

 cc yx ,

3 2whz 
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• Select the theoretical ideal pole contour. 

2

2h
xy 

3323 hyyx 

for the quadrupole.   

for the sextupole.   

• Select a practical coil geometry. 
 

– Expressions for the required excitation and practical 
current densities will be developed in a later lecture.   
 

• Select a yoke geometry that will not saturate. 
 

• Run a FEM code in the quadrupole or sextupole space.   
 

• From the solution, edit the vector potential values at a fixed 
reference radius.   
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• Map the vector potentials, the good field region and the 
pole contour. 

 

• Design the pole bump such that the field in the mapped 
good field region satisfies the required uniformity.   
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• Map the optimized dipole pole contour back into the 
quadrupole (or sextupole) space. 

 

• Reanalyze using the FEM code. 
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Closure 
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• The function, zn, is important since it represents different 
field shapes.  Moreover, by simple mathematics, this 
function can be manipulated by taking a root or by taking 
it to a higher power.  The mathematics of manipulation 
allows for the mapping of one magnet type to another, 
extending the knowledge of one magnet type to another 
magnet type.   
 

• One can make a significant design effort optimizing one 
simple magnet type (the dipole) to the optimization of a 
much more difficult magnet type (the quadrupole and 
sextupole).   
 

• The tools available in FEM codes can be exploited to verify 
that the performance of the simple dipole can be 
reproduced in a higher order field.   



Next… 
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• Perturbations 
 

• Magnet excitation 


